Conjugate Acid Base Pairs Chem Worksheet 19-2

Name

An acid is defined as a proton (H⁺) donor while a base is a proton acceptor. The substance that is produced after an acid has donated its proton is called the conjugate base while the substance formed when a base accepts a proton is called the conjugate acid. The conjugate acid can donate a proton to the conjugate base, to reform the original reactants in the reverse reaction.

Acids donate protons Bases accept protons

A proton is a hydrogen ion

$$HF + H_2O \leftrightarrows H_3O^+ + F$$
acid base c. acid c. base

In the reaction above HF is the acid and H₂O is the base. The HF has given a proton to the H₂O, forming H₃O⁺ and F⁻. Since the product H₃O⁺ can donate a proton back to F⁻ it is labeled the conjugate acid, while the F is the conjugate base.

Example

Write an equation that shows NH₃ reacting with HCl. Label the acad, base, and conjugate acid and conjugate base

Write reactants and transfer a proton from the acid to the base

Rewrite each equation. Identify the acid, the base, the conjugate acid, and the conjugate base in each of the equations.

1.
$$\overset{\circ}{\text{HCl}} + \overset{\circ}{\text{NH}_3} \rightarrow \overset{\circ}{\text{NH}_4}^+ + \overset{\circ}{\text{Cl}}$$

2. OH + HCN
$$\rightarrow$$
 H₂O + CN

2. OH + HCN
$$\rightarrow$$
 H₂O + CN
Cb CA
3. PO₄³⁻ + HNO₃ \rightarrow NO₃ + HPO₄²⁻
4. HCO₃ + HCl \rightarrow H₂CO₃ + Cl

4.
$$HCO_3^- + HCI \rightarrow H_2CO_3 + CI^-$$

6.
$$NH_4^+ + H_2O_A \rightarrow NH_3 + H_3O^+$$

8.
$$\text{HPO}_4^{2-} + \text{H}_2^{2}\text{O} \rightarrow \text{OH}^{-} + \text{H}_2^{2}\text{PO}_4^{-}$$

Fill in the following table.

	Acid	Base	Conjugate Acid	Conjugate Base	Equation
9	HNO ₂	H ₂ O	H26+	NO2-	$HNO_2 + H_2O \rightarrow NO_2^- + H_3O^+$
10	H ₂ O	F	HF	OH	HZO+F- >HF +OH-
11	HKN	NH2	NHyt	CN-	$NH_3 + HCN \rightarrow NH_4^+ + CN^-$
12	HC102	04-	H ₂ O	ClO₃¯	HC103+0H- → H20+C103
13	HSO₄¯	PO ₄ ³⁻	H= PO4	504 ²⁻	14504 + POy3 -> HPOy2 + SQ2
14	tro	5-2	H5	0 H-	$S^{2-} + H_2O \rightarrow OH^- + HS^-$
15	HCO ₂ H	OH	H20	C02H-	1+coz + +oH - → Hzo + (OzH

- 16. Write an equation that shows the reaction of ammonia, NH3 with hydrobromic acid, HBr. Label the acid, NH3+ HBrz > Br + NHUT the base, the conjugate acid, and the conjugate base.
- 17. Write an equation that shows the reaction of phosphate ion, PO_4^{3-} , reacting with hydronium ion, H_3O^+ . Label the acid, the base, the conjugate acid, and the conjugate base. $R_{43}^{3-} + H_{3}^{0+} \rightarrow H_{20} + H_{3}^{0}$
- 18. Write an equation that shows the reaction of hydrogen sulfide, HS with hydroxide ion, OH. Label the acid, the base, the conjugate acid, and the conjugate base. HS + OH -> H20 + S"

WS19-2ConjugatePairs