Volume of qualifying (STP)	
22.4L 1,00 ma 22.4L 22.4L	
Mass 190 min 1	Representative particles

Hour:	Date:	
-------	-------	--

← This image shows:_____

Conversion Factors:

(these factors describe what one mole of a substance can be equal to, these form the "bridges" of our dimensional analysis).

1 mole = 6.02×10^{23} atoms

1 mole = element's atomic
mass in grams (calculated the same
way formula mass is calculated)

1 mole = 22.4 liters of ANY
gas at STP*
*STP = standard temperature and pressure

Particle Conversion: Changing between units of Moles and Atoms

1. How many Mg atoms are in 3.24 moles of Mg?

Starting amount (moles)

Name:

Conversion Factor

Ending amount (atoms)

2. 2.68×10^{24} atoms of Cu equal how many moles?

Starting amount (atoms)

Conversion Factor

Ending amount (moles)

3. How many moles are 1.505×10^{23} Na atoms?

Mass Conversions: Converting between Grams and Moles

4. Convert 5.00 moles of carbon to grams.

Starting amount (moles)

Conversion Factor

Ending amount (grams)

5. Convert 4.86×10^4 g of Mg to moles.

Starting amount (grams)

Conversion Factor

Ending amount (moles)

6.	Convert 9.213 moles of Fe t	o grams.	-			
	Starting amount	Conversion Factor	Ending amount			
Volem						
<u>v oium</u> 7.	Volume Conversions: Converting between Volume and Moles 7. What volume will 5 moles of O ₂ gas occupy at STP?					
	Starting amount (moles)	Conversion Factor	Ending amount (Volume in L)			
8.	A container holds 7.5 liters o	f CO ₂ at STP, how many moles of gas	s is this?			
9.	H ₂ gas at STP occupies 57L o	of space, how many moles of H2 are pa	resent?			
	<i>Mole Problems (some may re</i> Convert 84,520 mg of Ne to a					
11. F	How many atoms are in 45.6 ε	grams of sulfur?				
12. How many moles are in 68 grams of copper (II) hydroxide, Cu(OH) ₂ ?						
13. What is the mass of 8.944×10^{18} iron atoms in cg (remember $1g = 100$ cg)?						
14. H	ow many grams are in 3.3 mo	oles of potassium sulfide, K2S?				
	Together Problems hat is the density of helium?	(What is the mass of one mole; what is the volume	e of one mole?, density = Mass/Volume)			

16. What is the density of Carbon di-oxide(CO₂) gas?