| your Journal. Remember that you can use your Skittles Lab: Isotopes and Calculating Average Objective: Show how Skittles can be an analogy for it. Calculate the atomic mass for the element Procedure: Obtain a snack bag of skittles. Record the mass of each skittle as either make a data table of this information.) Calculate what percent of each mass the | Atomic Mass sotopes at Sk (skittles) 1.1, 1.0, or .9 grams (it would be easiest to skittles bag contains. by it's corresponding mass. (example = if 9 and get an answer) kittle by adding the three answers in | |--|---| | skittle type (mass) | number of that type of skittle | | .9 | | | 1.0 | | | 1.1 | | | calculations = (individual) 1. % of skittles that are .9 = | contributing mass = | | 2. % of skittles that are 1.0 = | contributing mass = | | 3. % of skittles that are 1.1 = | contributing mass = | Average atomic mass of a skittle = _____ Data: (class) | skittle type (mass) | number of that type of skittle | |---------------------|--------------------------------| | .9 | · | | 1.0 | | | 1.1 | | 4. % of skittles that are .9 = _____ contributing mass = _____ 5. % of skittles that are 1.0 = ____ contributing mass = _____ 6. % of skittles that are 1.1 = _____ contributing mass = _____ Average atomic mass of a skittle =