Physics LAB: Acceleration due to Gravity

Purpose: To determine the acceleration of objects in free fall and whether objects fall at the same rate.

Materials: gravity video stopwatch calculator

Procedure:

- 1. You will be shown a video in which 7 different objects are dropped from a height of 12 m, in the Picard Auditorium. You will time each object as it falls and record the time in the Table below.
- 2. Once you have the time for each object you will square that value and report your average time squared.

Table:

Trial	Object	Mass of Object (g)	Distance (m)	Time (s ²)	Time (s ²)	Ave. Time (s ²)
1	Steel Ball	55	12			
2	Brass Ball	72	12			
3	Steel Cylinder	270	12			
4	Steel Disc	92	12			
5	Ping Pong Ball	7	12			
6	Styrofoam Ball	25	12			
7	Softball	175	12			

3. Finally calculate the acceleration due to gravity using the formula below:

Rank the objects from the one that took the least amount of time to the greatest. After that is complete, calculate the acceleration of each object using the equation:

$$a = \frac{2d}{t^2}$$

	Object	Time (s^2)	Accel. m/s^2
1			
2			
3			
4			
5			
6			
7			

Questions: Answer in the space provided using full sentences.

- 1. What is the accepted value for the acceleration due to gravity (g) ?
- 2. What do the results of this experiment tell you about how the mass of the object affects the object's acceleration?
- 3. What do the results of this experiment tell you about how the size of the object affects the object's acceleration?
- 4. How does air resistance affect the results of this experiment?
- 5. What is terminal velocity?
- 6. Which of the above objects has the highest terminal velocity? Why?
- 7. Which of the above objects has the lowest terminal velocity? Why?
- 8. What two forces must be equal when an object reaches its terminal velocity?